Геометрия 8 Атанасян Самостоятельная 2 с ответами

Геометрия 8 класс (УМК Атанасян и др. — Просвещение). Урок 7. Самостоятельная работа № 2 «Параллелограмм» с ответами (3 уровня сложности по 2 варианта в каждом). Геометрия 8 Атанасян Самостоятельная 2.

Геометрия 8 класс. Урок 7.
Самостоятельная № 2 «Параллелограмм»

   I уровень сложности (задания)

Вариант 1

  1. В четырехугольнике ABCD АВ || CD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр ΔCOD.
  2. Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите ∠C, ∠D.
  3. Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.

Вариант 2

  1. В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр ΔAOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
  2. В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AD = ВК. Найдите ∠C, ∠D.
  3. Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.

   II уровень сложности (задания)

Вариант 3

  1. В четырехугольнике ABCD ∠А + ∠B = 180°, АВ || CD. На сторонах ВС и AD отмечены точки М и К соответственно так, что ВМ = KD. Докажите, что точки М и К находятся на одинаковом расстоянии от точки пересечения диагоналей четырехугольника.
  2. На сторонах РК и МН параллелограмма МРКН взяты точки А и В, соответственно МР = РВ = АК; ∠MPB = 60°. Найдите углы параллелограмма и сравните отрезки ВМ и АН.
  3. На основании АС равнобедренного треугольника АВС отмечена точка К, а на сторонах АВ и ВС – точки М и Р соответственно, причем РК = MB, ∠KPC = 80°, ∠C = 50°. Докажите, что КМВР – параллелограмм.

Вариант 4

  1. В четырехугольнике МРКН ∠PMK = ∠HKM, РК || МН. Через точку пересечения диагоналей проведена прямая, пересекающая стороны РК и МН в точках А и В соответственно. Докажите, что АР = НВ.
  2. На сторонах ВС и AD параллелограмма ABCD взяты точки М и К, АВ = ВМ = KD, ∠AMB = 30°. Найдите угол параллелограмма и сравните отрезки АМ и СК.
  3. В треугольнике МРК ∠M = 65°. На сторонах МК, МР, РК отмечены точки А, В, С соответственно так, что середина стороны РК – точка С, AM = КС, BP = АС, ∠BAM = 50°. Докажите, что ВРСА – параллелограмм.

   III уровень сложности (задания)

Вариант 5

  1. В выпуклом четырехугольнике ABCD ∠A + ∠B = ∠B + ∠C = = 180°. Через точку О пересечения диагоналей четырехугольника проведена прямая, пересекающая стороны ВС и AD в точках М и К соответственно; ∠BOM = 90°. Докажите, что KD = ВМ.
  2. На сторонах ВС и CD параллелограмма ABCD отмечены точки М и Н соответственно так, что отрезки ВН и MD пересекаются в точке О; ∠BHD = 95°, ∠DMC = 90°, ∠BOD = 155°. Найдите отношение длин отрезков АВ и MD и углы параллелограмма.
  3. Точки М и К являются соответственно серединами сторон АВ и ВС треугольника АВС. Через вершину С вне треугольника проведена прямая, параллельная АВ и пересекающая луч МК в точке Е. Докажите, что КЕ = АС : 2.

Вариант 6

  1. В выпуклом четырехугольнике МРКН ∠M + ∠P = 180°, ∠MKH = ∠KMP. На сторонах МН и РК отмечены точки А и В так, что РВ = РА. Отрезок АВ проходит через точку пересечения диагоналей четырехугольника. Докажите, что HP ⊥ АВ.
  2. На сторонах ВС и CD параллелограмма ABCD взяты точки К и М соответственно. Отрезки ВМ и KD пересекаются в точке О; ∠BOD = 140°, ∠DKB = 110°, ∠BMC = 90°. Найдите отношение длин отрезков МС и AD и углы параллелограмма.
  3. Точки А и В принадлежат соответственно сторонам РЕ и ЕТ треугольника РЕТ. Прямая, проходящая через вершину Т вне треугольника, пересекает луч АВ в точке К так, что АР = КТ, АВ = ВК= РТ : 2. Докажите, что точка А является серединой отрезка РЕ.

 

Геометрия 8 Атанасян Самостоятельная 2. ОТВЕТЫ

   I уровень сложности (ответы)

Вариант 1

  1. ABCD – параллелограмм (рис. 5.67), тогда CD = АВ = 13 см, ОС = АО = 10 см, BD = OD = 5 см (объясните). PCOD = 10 + 5 + 13 = 28 см.
  2. ВК = АВ/2 (рис. 5.68), тогда ∠A = 30° (объясните), значит, ∠C = 30°, ∠D = 150° (объясните).
  3. В четырехугольнике ABCD (рис. 5.69) диагонали точкой пересечения делятся пополам, значит, ABCD – параллелограмм.

Вариант 2

  1. ABCD – параллелограмм (рис. 5.70), тогда АО = СО = 8 см, ВО = DO = 7 см (объясните). Так как PAOD = 25 см, то ВС = AD = 10 см.
  2. АК = ВК (рис. 5.71), тогда ∠A = 45° (объясните), ∠C = 45°, ∠D = 135° (объясните).
  3. ABCD – параллелограмм (рис. 5.72), тогда АО = СО, ВО = DO. В четырехугольнике MBND диагонали точкой пересечения делятся пополам, значит, MBND – параллелограмм.

Геометрия 8 Атанасян Самостоятельная 2

   II уровень сложности (ответы)

Вариант 1

  1. (рис. 5.73) а) Докажите, что ABCD – параллелограмм и ВС || AD. б) Докажите, что ΔBOM = ΔDOK и ОМ = ОК.
  2. (рис. 5.74) а) Докажите, что ΔМРВ – равносторонний, ∠M = 60°, ∠K = 60. б) Докажите, что ΔАКН – равносторонний, ΔАКН = ΔМРВ, тогда МВ = АН, ∠M = ∠K = 60°, ∠P = ∠H = 120°.
  3. (рис. 5.75) а) Найдите ∠B и докажите, что МВ || КР. б) Докажите, что МВРК – параллелограмм.

Вариант 2

  1. (рис. 5.76) а) Докажите, что МРКН – параллелограмм и РО = НО. б) Докажите, что ΔРОА = ΔНОВ и РА = НВ.
  2. (рис. 5.77) а) Докажите, что ΔАВМ – равнобедренный, ∠B = 120°, ∠BAD = 60°. б) Докажите, что ΔАВМ = ΔKDC и AM = КС, ∠B = ∠D = 120°, ∠14 = ∠C = 60°.
  3. (рис. 5.78.) а) Докажите, что в ΔАВМ МА = ВА. б) Докажите, что ВРСА – параллелограмм.

 

   III уровень сложности (ответы)

Вариант 1

  1. (рис. 5.79) а) Докажите, что ΔBCD – параллелограмм и АО = СО. б) Докажите, что ΔАОК = ΔСОМ и КО = МО. в) Докажите, что ΔDKO = ΔВМО и KD = ВМ.
  2. (рис. 5.80) ∠MDC = 60°, ∠MCD = 30° (объясните). MD = CD/2, AB : MD = 2 : 1, ∠C = ∠A = 30°, ∠B = ∠D = 150°.
  3. (рис. 5.81) а) Докажите, что ΔMВК = ΔЕСК и ЕС = МВ = AM, КЕ = МК = ME/2; б) Докажите, что АМЕС – параллелограмм и ME = АС, т. е. КЕ = АС/2.

Вариант 2

  1. (рис. 5.82) а) Докажите, что МРКН – параллелограмм и МО = ОК. б) Докажите, что ΔMОА = ΔКОВ и АО = ОВ. в) Докажите, что РО⊥АВ и PH⊥АВ.
  2. (рис. 5.83) ∠KDC = 50°, ∠MCB = 60°, ∠CBM = 30° (объясните). СМ = ВС/2;  МС : AD = 1 : 2;  ∠C = ∠A = 60°,  ∠B = ∠D = 120°.
  3. (рис. 5.84) а) Докажите, что РАКТ – параллелограмм и РЕ || КТ. б) Докажите, что ΔАЕВ = ΔКТВ и АЕ = КТ = РА, т. е. А – середина РЕ.


Вы смотрели: Геометрия 8 класс (УМК Атанасян и др. — Просвещение). Урок 4. Самостоятельная работа № 2 «Параллелограмм» с ответами (3 уровня сложности по 2 варианта в каждом). Геометрия 8 Атанасян Самостоятельная 2. Ориентировано на работу с базовым учебником: «Атанасян Л.С., Бутузов В.Ф. и др. Геометрия. 7—9 классы. Учебник для общеобразовательных организаций. М.: Просвещение». В учебных целях использованы цитаты из пособия «Поурочные разработки по геометрии. 7 класс / Гаврилова Н.Ф. — М.: ВАКО».

Вернуться в Поурочное планирование по геометрии для 8 класса (УМК Атанасян).

Перейти к Списку самостоятельных работ по геометрии в 8 классе (Оглавление)

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней