Геометрия 9 класс Контрольная № 5 УМК Атанасян

Контрольная работа № 5 по геометрии в 9 классе «Движения» (3 уровня сложности по 2 варианта). УМК Атанасян и др. (Просвещение). Поурочное планирование по геометрии для 9 класса (Н.Ф. Гаврилова, ВАКО). Урок 59. Геометрия 9 класс Контрольная № 5 «Движения». Ответов нет!

Смотреть Список всех контрольных по геометрии в 9 классе (УМК Атанасян)


 

Контрольная работа № 5
«Движения»

Цель: проверить знания, умения и навыки учащихся по теме.
Тип урока: урок контроля, оценки и коррекции знаний.

ХОД УРОКА

1. Организационный момент

Мотивация к учебной деятельности. Учитель сообщает тему урока, формулирует цели урока.

2. Контрольная работа «Движения»

   I уровень сложности

Вариант 1

  1. Начертите ромб ABCD. Постройте образ этого ромба при:
    а) симметрии относительно точки С;
    б) симметрии относительно прямой АВ;
    в) параллельном переносе на вектор АС;
    г) повороте вокруг точки D на 60° по часовой стрелке.
  2. Докажите, что прямая, содержащая середины двух параллельных хорд окружности, проходит через ее центр.
  3. * Начертите два параллельных отрезка, длины которых равны. Начертите точку, являющуюся центром симметрии, при котором один отрезок отображается на другой.

Вариант 2

  1. Начертите параллелограмм ABCD. Постройте образ этого параллелограмма при:
    а) симметрии относительно точки D;
    б) симметрии относительно прямой СD;
    в) параллельном переносе на вектор BD;
    г) повороте вокруг точки А на 45° против часовой стрелки.
  2. Докажите, что прямая, содержащая середины противоположных сторон параллелограмма, проходит через точку пересечения его диагоналей.
  3. * Начертите два параллельных отрезка, длины которых равны. Постройте центр поворота, при котором один отрезок отображается на другой.

 

   II уровень сложности

Вариант 1

  1. Начертите треугольник АВС. Постройте его образ при:
    а) симметрии относительно его высоты, выходящей из вершины А;
    б) симметрии относительно точки D, являющейся серединой стороны АВ;
    в) параллельном переносе на вектор AM, где М — точка пересечения медиан треугольника;
    г) повороте вокруг вершины С на 45° против часовой стрелки.
  2. Составьте уравнение образа окружности х2 + у2 – 6х + 8у – 11=0 при повороте на 90° против часовой стрелки относительно начала координат.
  3. * Начертите два непараллельных отрезка АВ и CD, длины которых равны. Постройте центр поворота, отображающего отрезок АВ на CD (А → С, В → D).

Вариант 2

  1. Начертите треугольник АВС. Постройте его образ при:
    а) симметрии относительно биссектрисы его угла В;
    б) симметрии относительно точки Н, если АН — высота треугольника;
    в) параллельном переносе на вектор АО, где О — центр описанной около треугольника окружности;
    г) повороте вокруг вершины В на 60° по часовой стрелке.
  2. Составьте уравнение образа окружности х2 + у2 + 4х – 10у – 20 = 0 при повороте на 180° по часовой стрелке относительно начала координат.
  3. * Дан ΔАВС и параллельные прямые а и b. Постройте треугольник, равный данному, так, чтобы основание его принадлежало прямой а, а вершина — прямой b.

 

   IIуровень сложности

  1. Начертите параллелограмм ABCD. Постройте его образ при:
    а) симметрии относительно прямой, проходящей через вершину D параллельно диагонали АС;
    б) симметрии относительно точки, являющейся серединой AD;
    в) параллельном переносе на вектор АЕ, где Е ∈ АС и АЕ : ЕС = 3 : 1;
    г) повороте вокруг точки пересечения диагоналей на 150° против часовой стрелки.
  2. Найдите уравнение кривой, полученной параллельным переносом на вектор ā {1; 1} из параболы у = х2 – 3х + 1.
  3. * Внутри угла отмечена точка М, не лежащая на его биссектрисе. С помощью циркуля и линейки постройте окружность, касающуюся сторон угла и проходящую через точку М.

Вариант 2

  1. Начертите ромб ABCD. Постройте его образ при:
    а) симметрии относительно прямой, проходящей через вершину С параллельно диагонали АС;
    б) симметрии относительно точки, являющейся серединой стороны ВС;
    в) параллельном переносе на вектор BE, где К ∈ BD и ВК : KD = 1 : 3;
    г) повороте вокруг точки пересечения диагоналей на 120° по часовой стрелке.
  2. Найдите уравнение кривой, из которой получена парабола у = х2 – 2х + 5 параллельным переносом на вектор ā {–1; 1}.
  3. * Даны угол и точка внутри него. С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат на сторонах угла, а одна из сторон проходит через данную точку.

Геометрия 9 класс Контрольная № 5

 

3. Рефлексия учебной деятельности

В конце урока учитель раздает на каждую парту ответы на задачи контрольной работы.
Домашнее задание: решить задачи, с которыми ученик не справился.

 


Вы смотрели: Геометрия 9 класс Контрольная № 5. Поурочное планирование по геометрии для 9 класса. УМК Атанасян (Просвещение). Урок 59. Контрольная работа по геометрии «Движения».

Смотреть Список всех контрольных по геометрии в 9 классе по УМК Атанасян.

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Send this to a friend