Ключевые задачи по теме Треугольники

Наглядная геометрия 7 класс. Ключевые задачи по теме Треугольники



Ключевые задачи по теме Треугольники


 

Запомните!

1. Признаки равенства треугольников.

  • 1-й. По двум сторонам и углу между ними.
  • 2-й. По стороне и двум прилежащим к ней углам.
  • 3-й. По трем сторонам.

2. Свойство углов равнобедренного треугольника.

Углы при основании равнобедренного треугольника равны.

3. Обратная теорема.

Если два угла треугольника равны, то треугольник равнобедренный.

4. Свойство биссектрисы равнобедренного треугольника.

Биссектриса, высота и медиана равнобедренного треугольника, проведенные из вершины к основанию, совпадают.

5. Признаки равнобедренного треугольника. Треугольник является равнобедренным, если:

  • а) высота является и медианой;
  • б) высота является и биссектрисой;
  • в) биссектриса является и медианой.

6. Теорема о свойстве точек серединного перпендикуляра.

  • Любая точка серединного перпендикуляра равноудалена от концов отрезка.
  • Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к нему.

7. Теорема о пересечении серединных перпендикуляров.

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной около треугольника окружности.

 

Простые вопросы по теме «Треугольники»

  1. В треугольнике провели медиану. Сколько треугольников изображено на рисунке?
  2. Если стороны треугольника продлить, то сколько углов всего образуется, не считая развернутых? А считая и развернутые?
  3. Верно ли, что биссектриса треугольника лежит на биссектрисе угла?
  4. Может ли высота треугольника делить сторону пополам?
  5. Может ли биссектриса треугольника быть перпендикулярной стороне треугольника?
  6. Верно ли утверждение: «Биссектриса равнобедренного треугольника является высотой и медианой»?
  7. Является ли любой равнобедренный треугольник равносторонним?
  8. Является ли любой равносторонний треугольник равнобедренным?
  9. Может ли биссектриса некоторого равнобедренного треугольника, проведенная к боковой стороне, быть медианой?
  10. Может ли высота треугольника быть равна его медиане, проведенной из той же вершины?
  11. Может ли биссектриса треугольника быть равна его высоте, проведенной из той же вершины?
  12. Существует ли треугольник, периметр которого в 3 раза больше одной из сторон?
  13. Если медиана образует равные углы с соседними сторонами треугольника, то какой угол она образует с третьей стороной?
  14. Что для студентов означает слово «медиум»?
  15. Сколько всего теорем в данной теме?

Непростые вопросы по теме «Треугольники»

16* В треугольнике провели 2 медианы. Сколько треугольников изображено на рисунке?
17* В треугольнике провели 3 медианы. Сколько треугольников изображено на рисунке?
18* Может ли в треугольнике высота являться медианой, но не являться биссектрисой?
19* Как звучит теорема о свойстве углов равнобедренного треугольника в форме «Если …, то …»?
20* Как звучит утверждение, обратное теореме о свойстве углов равнобедренного треугольника, в форме «Если …, то …»?
21* Может ли медиана треугольника равняться соседней стороне?
22* Может ли биссектриса треугольника равняться соседней стороне?
23* Может ли высота треугольника равняться соседней стороне?
24* Может ли серединный перпендикуляр к стороне треугольника иметь общую точку с каждой из двух других сторон?
25* Может ли серединный перпендикуляр к стороне треугольника делить противоположный угол треугольника пополам?

Ответы на простые и непростые вопросы

  1. Три. Два маленьких и один данный.
  2. 12; 24.
  3. Да.
  4. Да. В равнобедренном треугольнике.
  5. Да. В равнобедренном треугольнике.
  6. Нет. Только биссектриса, проведенная из вершины к основанию.
  7. Нет.
  8. Да.
  9. Да. Если треугольник равносторонний.
  10. Да. В равнобедренном треугольнике это высота, проведенная к его основанию.
  11. Да. В равнобедренном треугольнике это биссектриса, проведенная к его основанию.
  12. Да. Например, равносторонний.
  13. 90°. Если медиана является биссектрисой, то треугольник равнобедренный и эта медиана является и высотой, проведенной к основанию.
  14. Медиум — студенческий праздник, знаменующий середину учебы.
  15. Тринадцать теорем, включая задачу о пересечении серединных перпендикуляров к сторонам треугольника.

16* 8.
17* 16.
18* Нет. Если высота является медианой, то треугольник равнобедренный и эта высота является и биссектрисой.
19* «Если треугольник равнобедренный, то углы при основании равны». 20* «Если у треугольника два угла равны, то треугольник равнобедренный».
21* Да.
22* Да.
23* Да. В прямоугольном треугольнике.
24* Да. В равнобедренном прямоугольном треугольнике.
25* Да. Если треугольник равнобедренный.


Это конспект по геометрии «Ключевые задачи по теме Треугольники». Выберите дальнейшие действия:

 

4 Комментарии

  1. Света:

    Я не думала что найду, спасибо большое!

  2. Бибисара:

    Я очень благодарно авторам «Ключевые задачи по теме Треугольники». Помогли мне и моим ученикам, спасибо Вам!

  3. Аноним:

    Огромная благодарность за работу. Очень много полезной информации.

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней