Урок 36. Решение задач на применение признаков подобия Δ - ГЕОМЕТРИЯ 8

Поурочное планирование по геометрии для 8 класса. Ориентировано на работу с УМК Атанасян и др. Геометрия 8 класс. Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 36. Решение задач на применение признаков подобия треугольников. Вернуться к Списку уроков Тематического планирования.


 

Урок 36. Решение задач на применение
признаков подобия треугольников

Основные дидактические цели урока: сформировать у учащихся навыки применения признаков подобия треугольников при решении задач; совершенствовать навыки доказательств теорем.

Ход урока

I. Организационный момент.

Мотивация к учебной деятельности. (Учитель сообщает тему урока, формулирует цели урока.)

II. Актуализация знаний учащихся

  1. Проверка домашнего задания. (Учитель проверяет решение задач № 559, 560 (б). Два ученика заранее готовят решение на доске.)

  1. Теоретический опрос. (Два ученика готовят доказательства теорем у доски.)
  • Сформулируйте признаки подобия треугольников.
  • Докажите теоремы, выражающие второй и третий признаки подобия треугольников.
  1. Работа по индивидуальным карточкам. (3—6 учеников работают по карточкам во время теоретического опроса.)

I уровень сложности

Подобны ли треугольники АВС и А1В1С1, если известно, что:

  1. АВ = 10 см; ВС = 5 см; АС = 7 см; А1В1 = 15 см; В1С1 = 7,5 см; A1С1 = 9,5 см?
  2. ∠A = 37°, ∠B = 48°, ∠C1 = 95°, ∠B1 = 48°?
  3. АВ = 10 см, ВС = 8 см, А1В1 = 5 см, А1С1 = 3 см, ∠C = ∠C1 = 90°?

II уровень сложности

  1. Прямая, параллельная стороне MN треугольника MNK, пересекает стороны КМ и KN в точках Е и F соответственно, КЕ = 6 см, KN = 10 см, KF = 9 см, KN = 15 см. Найдите отношения. a) EF: MN, б) PKMN : РКЕF, в) SKEF : SKMN.
  2. Точка Е — середина стороны AD параллелограмма ABCD. В каком отношении прямая BE делит диагональ АС параллелограмма? Найдите отношение площади треугольника АВЕ и четырехугольника BCDE.

III уровень сложности

  1. Основания трапеции равны 9 и 6 см, а высота равна 10 см. Найдите разность расстояний от точки пересечения диагоналей трапеции до ее оснований.
  2. Докажите признак подобия прямоугольных треугольников по гипотенузе и катету.
  3. Решение задач по готовым чертежам.
  • 1) Рис. 7.32. Найти: ∠C1,  В1С1.
  • 2) Рис. 7.33. Найти: ∠C, ∠C1
  • 3) Рис. 7.34. Найти: ВМ.
  • 4) Рис. 7.35. Найти: ВС.
  • 5) Рис. 7.36. Найти: ∠DCA.
  • 6) Рис. 7.37. Найти АВ, NC.

Ответы к задачам по готовым чертежам:

  • 1) ∠C1 = 71°, В1С1 = 15 см.
  • 2) ∠C = ∠C1 = 60°.
  • 3) ВМ = 6 см.
  • 4) BC = 20/3.
  • 5) Обратите внимание! Ответ автора задания ∠DCA = 90°. Однако, этот ответ нельзя признать правильным в виду каких-то опечаток в рис.7.36. Единственный вывод из рисунка: треугольники ABC и АCD подобны (по трем сторонам), но в таком случае ответ должен быть 80°, а не 90°. Но самый противоречивый момент связан с тем, что треугольники с заявленными сторонами и углами не существуют. Если считать, что стороны на рисунке указаны правильно, то вместо 80° должно быть указано 92,73°, а вместо 55° должно быть 45,52°. Тогда правильный ответ будет ∠DCA =  92,73°.
  • 6) АВ = 8, NC= 8.

(После окончания самостоятельного решения задач и самопроверки по готовым ответам выполняется самооценка.) Критерии оценивания:

  • оценка «5» — правильно решены пять-шесть задачи;
  • оценка «4» — правильно решены четыре задачи;
  • оценка «3» — правильно решены две-три задачи;
  • оценка «2» — не ставится.

(Учащиеся, справившиеся со всеми задачами, решают дополнительные задачи.)

Дополнительные задачи

  1. Диагональ АС трапеции ABCD (АВ||CD) делит ее на два подобных треугольника. Найдите площадь трапеции ABCD, если АВ = 25 см, ВС = 20 см, АС = 15 см.

Ответ: SABCD = 204 см2.

  1. Угол В треугольника AВС в два раза больше угла А. Биссектриса угла В делит сторону АС на части AD = 6 см и CD = 3 см. Найдите стороны треугольника АВС.

Ответ: АС = 9 см, АВ = 6√3 см, ВС = 3√3 см.

III. Самостоятельная работа

I уровень сложности

Вариант 1

  1. Рис. 7.38. Доказать: ΔАВС ~ ΔА1В1С1
  2. Продолжения боковых сторон трапеции ABCD пересекаются в точке О. Найдите ВО и отношение площадей треугольников ВОС и AOD, AD = 5 см, ВС = 2 см, АО = 25 см.

Вариант 2

  1. Рис. 7.39. Доказать: ΔАВС ~ ΔА1B1С1.
  2. АВ и CD пересекаются в точке О, АО = 12 см, ВО = 4 см, СО = 30 см, DO = 10 см. Найдите угол САО, если ∠DBO = 61°. Найдите отношение площадей треугольников АОС и BOD.

II уровень сложности

Вариант 1.

  1. Рис. 7.40. Доказать: ΔАВС ~ ΔА1В1С1
  2. Прямая, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС соответственно в точках М и Н. Найдите АС и отношение площадей треугольников АВС и ВМН, если МВ = 14 см, АВ = 16 см, МН = 28 см.

Вариант 2

  1. Рис. 7.41. Доказать: ΔМВН ~ ΔСВA.
  2. В треугольнике АВС АВ = 15 м, АС = 20 м, ВС = 32 м. На стороне АВ отложен отрезок AD = 9 м, а на стороне АС — отрезок АЕ = 12 м. Найдите DE и отношение площадей треугольников АВС и ADE.

III уровень сложности

Вариант 1

  1. Дано: ∠1 = ∠2, AD = 4, АС = 9 (рис. 7.42). Найти: АВ, SABD : SABC.
  2. Диагонали четырехугольника ABCD пересекаются в точке О, АО • ВО = СО • DO. Докажите, что площади треугольников ACD и ABD равны.

Вариант 2

  1. Дано: ВС ⊥ АС, МН ⊥ ВС, 2МС = ВС, МН = 0,5АС (рис. 7.43). Доказать: АВ||СН. Найти. SАВС : SMCH.
  2. В трапеции ABCD AD и ВС — основания, О — точка пересечения диагоналей, АО : ОС = 3 : 2. Найдите отношение площадей треугольников АВС и ACD.

(Ответы на самостоятельную работу смотрите в уроке 37)

IV. Рефлексия учебной деятельности

  1. Сформулируйте признаки подобия треугольников.
  2. В каком случае подобны равносторонние, равнобедренные, прямоугольные треугольники?

Домашнее задание. Решить задачи № 562, 563, 604, 605.

 


Вы смотрели: Поурочное планирование по геометрии для 8 класса. УМК Атанасян и др. (Просвещение). Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 36. Решение задач на применение признаков подобия треугольников.

Вернуться к Списку уроков Тематического планирования.

2 Комментарии

  1. Аноним:

    Не корректно подобраны данные в задачах по чертежам. в случае 7,36 угол ДСА никак не может быть равен 90 градусов, так как там не соблюдается теорема Пифагора!!! И по вашим данным, этот угол около 96 градусов!!!

    • admin:

      Да, здесь у автора пособия какая-то опечатка. В ответе разместили предупреждение об ошибке.

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней