Механические колебания
механические волны. Звук

ОГЭ по физике: 1.23. Механические колебания. Амплитуда, период и частота колебаний. Формула, связывающая частоту и период колебаний. Механические волны. Продольные и поперечные волны. Длина волны и скорость распространения волны. Звук. Громкость и высота звука. Скорость распространения звука. Отражение и преломление звуковой волны на границе двух сред. Инфразвук и ультразвук.

ЕГЭ по физике: 5.1. Механические колебания и волны.

 

Механические колебания

Движение, при котором состояния движущегося тела с течением времени повторяются, причём тело проходит через положение своего устойчивого равновесия поочерёдно в противоположных направлениях, называется механическим колебанием.

Механические колебания

Условием возникновения колебания является наличие в системе возвращающей силы, всегда направленной к положению устойчивого равновесия. Каждый законченный цикл колебательного движения, после которого оно вновь повторяется, называется полным колебанием.

Смещением х называется отклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитудой колебаний хm называется модуль наибольшего смещения тела от положения равновесия при колебательном движении.

амплитуда и период

Периодом колебания Т называется время, за которое совершается одно полное колебание: Т = t/N.

Величину, равную числу колебаний, совершаемых за единицу времени, называют частотой колебаний 

 Затухающими называются колебания, амплитуда которых уменьшается с течением времени. Затухание свободных механических гармонических колебаний связано с уменьшением механической энергии колебательной системы за счёт работы сил сопротивления (трения).

Гармонические колебания

Механическое колебание, при котором координата тела меняется по закону синуса или косинуса, называется гармоническим колебанием. Если момент начала отсчета времени колебаний совпадает с максимальным отклонением маятника от положения равновесия, то колебания являются косинусоидальными и их начальная фаза равна нулю. Если момент начала отсчета времени колебаний совпадает с прохождением маятником положения равновесия, то колебания являются синусоидальными и их начальная фаза тоже равна нулю.

Графики косинусоидальных гармонических колебаний смещения х, скорости v, ускорения а, силы F, потенциальной Ер, кинетической Ек и полной Е энергий, когда начальная фаза равна нулю:графики колебаний

Гармонические колебания происходят под действием переменной силы, пропорциональной смещению маятника от положения равновесия и всегда направленной к положению равновесия. Поскольку в процессе колебаний эта сила изменяется, изменяется и ускорение маятника, возникающее под действием этой силы. Поэтому к колебательному движению нельзя применять формулы равномерного или равноускоренного движений, с их помощью можно определять только средние скорость и ускорение за определенный промежуток времени. Чтобы найти мгновенную скорость, надо брать первую производную смещения по времени, а чтобы найти мгновенное ускорение — первую производную скорости по времени.

Если дано уравнение гармонических колебаний с цифровыми значениями параметров и требуется из него найти какую-либо величину, то запишите рядом уравнение гармонических колебаний в общем виде и сопоставьте его с данным уравнением. Та величина, что стоит между знаком «равно» и синусом или косинусом, есть амплитуда, в каком бы виде она ни была записана. Та, что стоит между синусом или косинусом и временем t, есть циклическая частота, а та, что без t, есть начальная фаза.

Если наоборот, даны числовые значения параметров, а требуется записать уравнение колебаний, подставьте в уравнение в общем виде все числа, а время t оставьте в буквенном виде.

Математический маятник

Математическим маятником называют материальную точку, подвешенную на тонкой нерастяжимой нити. Маленький металлический шарик, подвешенный на длинной нити, можно условно считать математическим маятником.

При колебаниях математического маятника (в отсутствие сил трения) выполняется закон сохранения механической энергии и периодически происходит переход потенциальной энергии в кинетическую и обратно.

В положении максимального отклонения от положения равновесия потенциальная энергия маятника максимальна, а кинетическая равна нулю. При приближении к положению равновесия потенциальная энергия уменьшается, а кинетическая увеличивается, достигая максимального значения в положении равновесия, в котором потенциальная становится равной нулю: Wполн = Wп + Wк = const Eполн = Eк max = Еп maх.

энергия маятника

Если маятник не является ни пружинным, ни математическим, то к такому — физическому — маятнику формулы периода и частоты пружинного и математического маятников неприменимы. Для решения задач на физический маятник следует пользоваться законами Ньютона, сохранения импульса и сохранения энергии.

 

Механические волны

Если в упругой среде (газ, жидкость или твёрдое тело) имеется источник колебаний, то в ней с течением времени происходит процесс распространения колебаний, этот процесс называется волной.

механические волны

Волны, распространяющиеся в упругой среде, называются механическими волнами. В волне осуществляется перенос энергии колебательного движения без переноса вещества (массы) среды, в которой распространяется волна.

Периодом Т волны является период колебаний точек среды при распространении волны. Длиной волны λ называется расстояние, на которое распространяется волна за один период колебаний: λ = ʋT; ʋ = λv.

Продольными волнами называются волны, в которых направление колебаний частиц происходит в направлении распространения волны. Продольные механические волны могут распространяться в твёрдых, в жидких и в газообразных средах.

Поперечными называются волны, в которых направление колебаний частиц происходит перпендикулярно направлению распространения волны. Поперечные механические волны могут распространяться только в твёрдых телах и на свободной поверхности жидкости.

В вакууме механические волны распространяться не могут. Поэтому, каким бы сильным ни был взрыв в космосе, на Земле его не услышат.

Вследствие отставания колебаний одних частиц среды от других в поперечных волнах возникают гребни и впадины, а в продольных — сгущения и разрежения. Механические волны не переносят вещество среды, но переносят ее форму: гребни и впадины в поперечной волне и сгущения и разрежения в продольной.

Механические волны переносят механическую энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Скорость волны υ — это скорость перемещения гребней или впадин в поперечной волне и сгущений или разрежений в продольной. Скорость волны в данной среде — постоянная величина, т.к. волны в однородной среде распространяются равномерно и прямолинейно. Скорость волны не равна скорости колебаний ее частиц, т.к. частицы волны колеблются с переменной скоростью.

Подтверждением волнового процесса в среде являются интерференция, дифракция, дисперсия и поляризация волн.

Волны, частицы которых колеблются с постоянной разностью фаз или с одинаковой частотой, называются когерентными. При наложении когерентных волн друг на друга возникает интерференция волн.

 

Звук. Характеристики звука

Звуковыми волнами называются механические волны, вызывающие у человека ощущение звука.

Звуковые волны — продольные волны звуковой частоты. Звуковой частотой, т.е. частотой, при которой человеческое ухо слышит звук, является частота от 16 Гц до 20 000 Гц. Звук с частотой меньше 16 Гц называется инфразвуком, а звук с частотой выше 20 000 Гц — ультразвуком.

Громкость (интенсивность) звука зависит от амплитуды колебаний звучащего тела. Чем больше амплитуда колебаний, тем громче звук.

Высота тона звука зависит от частоты колебаний звучащего тела (вибратора). Чем больше частота колебаний, тем выше тон. Частота колебаний крыльев мухи меньше частоты колебаний крыльев комара, поэтому муха жужжит, а комар пищит.

Скорость звука зависит от плотности среды. Скорость звука в твёрдых телах больше, чем в жидкостях, а в жидкостях больше, чем в газах. Скорость звука увеличивается с ростом температуры среды.

В случае, когда отражающая поверхность перпендикулярна распространению волны, звуковая волна после отражения возвращается обратно к источнику звука. Такой случай отражения называется эхом.

В гидролокации эхо используется для определения глубин, расстояний до преград и других судов.

Уравнения механических колебаний и волн

Уравнения механических колебаний и волн

 


Конспект урока «Механические колебания и механические волны. Звук». Выберите дальнейшее действие:

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней