Ключевые слова: хромосомная инженерия, генная инженерия, рестрикционные эндонуклеазы (рестриктазы); липкие концы; плазмиды; метод рекомбинантных плазмид; рестрикция, лигирование, трансформация, скрининг; трансгенные (генетически модифицированные) организмы, ГМО.
Раздел ЕГЭ: 3.9. Биотехнология, ее направления. Клеточная и генная инженерия, клонирование.
Учёные издавна мечтали целенаправленно изменять наследственность организмов, создавать новые комбинации хозяйственно ценных признаков. Современные исследователи приблизились к осуществлению этой мечты, овладев методами выделения из клеток хромосом, генов и их переноса в клетки другого организма. Осуществляет подобные эксперименты хромосомная и генная инженерия — перспективные направления биотехнологии.
Манипуляции с целыми хромосомами или их участками называют хромосомной инженерией. Её методы дают возможность заменить одну или обе гомологичные хромосомы на другие или ввести дополнительные хромосомы в генотип организма.
Метод добавления хромосом в геном детально разработан на культурных злаках. Так, японский учёный Д. Омара внёс отдельные хромосомы ржи в хромосомный набор пшеницы. Полученный гибрид дал при самоопылении совершенно иные растения, которые отличались от пшеницы по высоте, толщине стебля, размеру и форме колосьев. Привнесённые хромосомы ржи дали возможность существенно повысить зимостойкость гибридной пшеницы, придали ей устойчивость к полеганию и к заболеваниям.
Генная инженерия решает задачу целенаправленного создания новых комбинаций генетического материала путём лабораторных методов in vitro, которые позволяют манипулировать нуклеиновыми кислотами, переносить нужные гены организма одного вида в организм другого вида.
Генная инженерия зародилась в начале 70-х гг. XX в., когда американский учёный X. Корана искусственно синтезировал ген, а П. Лобан и П. Берг получили рекомбинантную молекулу ДНК, в которой были соединены фрагменты ДНК вирусов и бактерии кишечной палочки (Escherichia coli). Генная инженерия возникла на стыке молекулярной биологии, микробиологии и энзимологии. Открытия в молекулярной биологии позволили выяснить структуру и особенности работы генов. Микробиология помогла найти векторы для генно-инженерных работ — плазмиды — внехромосомные факторы наследственности бактерий, состоящие из небольших кольцевых молекул ДНК. Энзимология предоставила исследователям ферменты, называемые рестрикционными эндонуклеазами или рестриктазами (от лат. restricts — ограничение), которые способны «узнавать» определённые последовательности нуклеотидов в ДНК и разрезать их так, чтобы на концах молекул образовывались одноцепочечные «хвосты». Эти «хвосты» могут снова по принципу комплементарности соединяться друг с другом, поэтому они были названы липкими концами.
В генной инженерии бактериальные клетки с новым генетическим материалом создают с помощью метода рекомбинантных плазмид. Он включает несколько последовательных этапов.
Метод рекомбинантных плазмид
Методом рекомбинантных плазмид учёные создают штаммы бактерий, которые используются для производства в промышленном масштабе гормонов (инсулина, соматотропина), ферментов, белков-интерферонов, регуляторных пептидов и др. Этот же метод лежит в основе получения вакцин для борьбы с вирусами гепатита А и В, герпеса, гриппа, бешенства и ящура.
Клонированные гены путём микроинъекций могут быть введены в яйцеклетки, а из них выращены целые организмы, геном которых будет содержать чужеродные гены. Такие особи называют трансгенными (от лат. trans — сквозь, через) или генетически модифицированными организмами (ГМО).
В 1983 г. были получены первые трансгенные организмы — культурные растения табака и петуньи. Эти работы проводились учёными одновременно в Бельгии, Германии и США. Первой ГМО-культурой, коммерциализированной в Китае в 1992 году, стал табак, а первой ГМО-культурой, коммерциализированной в США в 1994 году, был томат FLAVR SAVR, разработанный для продления срока его хранения и минимизации размягчения фруктов. Этот томат не оправдал ожиданий, и его производитель прекратил продажи. С 1992 по 2020 год 41 страна пробовала выращивать ГМО-культуры. В настоящее время 28 стран ежегодно выращивают почти 200 млн га генетически модифицированных растений, что примерно в 113 раз больше, чем в 1996 году, когда их было 1,7 млн га. Биотехнологические культуры — это самая быстроразвивающаяся технология в истории современного сельского хозяйства.
Учёные создают трансгенные организмы с целью проявления у них новых хозяйственно ценных признаков. Например, при встраивании гена бактерии тюрингской бациллы (Bacillus thuringiensis), ответственного за выработку δ-эндотоксина, в генотип культурного картофеля получены так называемые Bt-растения картофеля (от названия вида бактерии), ядовитые для растительноядных насекомых, но безвредные для других животных и человека. Так был найден эффективный и экологически безопасный способ защиты культурного картофеля от его вредителя — колорадского жука.
(с) Genetic Literacy Project. Внедрение 22 различных культур в 41 странах мира с помощью трансгенеза, редактирования генов или других новых методов селекции (не все страны, которые ввели генетически модифицированные культуры за последние 28 лет, все еще выращивают их)
Получены трансгенные растения, устойчивые к гербицидам — ядам, применяемым для борьбы с сорняками. В настоящее время использование гербицидов сопряжено с рядом трудностей: универсальных препаратов не существует, т. е. каждый гербицид действует на определённые сорняки; гербициды накапливаются в почве, что угнетает развитие культурных растений и небезопасно для человека. Получение гербицидоустойчивых трансгенных культур стало выходом из сложившейся ситуации. Так, в клетки табака «вшили» гены бактерии сальмонеллы, обеспечивающие устойчивость к глифосату — наиболее часто используемому гербициду. Трансгенный табак стал невосприимчивым к этому препарату, кроме того, содержание глифосата в почве при выращивании такой генетически модифицированной культуры существенно снизилось. В настоящее время получение гербицидоустойчивых трансгенных культурных растений считается важным практическим достижением биотехнологии. В 1997 г. устойчивая к глифосату соя была признана в США сельскохозяйственным продуктом года.
TOP 5 BIOTECH CROPS IN THE WORLD. SOURCES: ISAAA Brief 54 (bit.ly/ISAAABrief54)
Предприняты попытки создания методами генной инженерии азотфиксирующих растений. Если удастся встроить в генотип сельскохозяйственных культур ген, отвечающий за выработку ферментов, превращающих у клубеньковых бактерий из рода Rhizobium атмосферный азот в азотистые соединения, то выращиваемые на полях сельскохозяйственные растения смогут обойтись без дополнительной подкормки азотными удобрениями.
Велико потенциальное значение трансгенных организмов для здоровья человека. Так, введение гена моркови в генотип риса уже сейчас обеспечивает потребность жителей Юго-Восточной Азии в витамине А, необходимом для нормального роста и зрения. Встраивание генов, отвечающих за выработку антител, в генотипы сельскохозяйственных растений позволит человеку в будущем обойтись без многих лекарств. При постоянном использовании таких растений в пищу организм будет получать достаточное количество антител, что создаст надёжную защиту от инфекционных болезней.
Важной задачей генной инженерии является создание трансгенных животных. На трансгенных лабораторных мышах учёные моделируют развитие и течение различных генетических болезней человека, проводят испытания лекарственных препаратов. Созданы трансгенные овцы, генотип которых содержит ген, отвечающий за синтез особого белка — фактора свёртываемости крови IX. Этот белок, вырабатываемый клетками молочной железы, выделяется из овечьего молока и используется для лечения больных гемофилией. Раньше подобный белок получали только из донорской крови. Использовать для этого трансгенных животных безопаснее, так как у них нет вирусов, например ВИЧ и гепатита, которые могут встречаться в донорской крови.
Это конспект по биологии для 10-11 классов по теме «Хромосомная и генная инженерия». Выберите дальнейшее действие: