Правильные многоугольники

Наглядная геометрия 9 класс. Опорный конспект 4. Правильные многоугольники



Правильный многоугольник — это такой многоугольник, у которого все стороны и все углы равны. Равносторонний треугольник и квадрат — правильные многоугольники. Если разделить окружность на п равных частей и соединить соседние точки отрезками, то получим правильный многоугольник. Вокруг всякого правильного многоугольника можно описать окружность, в него также можно вписать окружность, и центры этих окружностей совпадают.

Мы научимся строить правильный треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник при помощи циркуля и линейки и выведем формулы, связывающие радиусы вписанной и описанной окружностей с длиной стороны правильного многоугольника.

Если число сторон вписанного правильного многоугольника увеличивать, то его периметр будет стремиться к длине окружности, а площадь — к площади круга. Отсюда можно получить формулы длины окружности и площади круга: С = 2πR и S = πR2.

Вы знаете, что углы измеряются в градусах. Градус, как известно, равен 1/180 части развернутого угла. Мы познакомимся еще с одной очень важной единицей измерения углов, которая связана с окружностью, — 1 радианом. 1 рад = 57°.

ТАБЛИЦА «Правильные многоугольники»

 

1. Правильный многоугольник. Теорема об описанной и вписанной окружностях.

Правильным называется многоугольник, у которого все стороны и углы равны.

Теорема. Вокруг всякого правильного многоугольника можно описать окружность. Во всякий правильный многоугольник можно вписать окружность. Центры этих окружностей совпадают.

Доказательство. Проведем биссектрисы двух углов правильного многоугольника. Получим равнобедренный треугольник (углы при основании равны как половины равных углов). Соединив точку пересечения биссектрис с третьей вершиной многоугольника, получим треугольник, равный 1-му (по двум сторонам и углу между ними). Продолжая соединять эту точку с остальными вершинами, получим множество равных равнобедренных треугольников. Тогда полученная точка равноудалена от всех вершин правильного многоугольника. Значит, она — центр описанной окружности. Так как высоты этих треугольников, опущенные на их основания, равны, то данная точка равноудалена и от сторон правильного многоугольника. Значит, она — центр вписанной окружности.

2. Выражение стороны а через R и r для правильного n-угольника.

Соединим центр правильного многоугольника с двумя соседними вершинами. Получим равнобедренный треугольник с углом при вершине, равным 360°/n. Половина его равна 180°/n, где n — число сторон. Из прямоугольного треугольника находим:

 

3. Выражение R и r через сторону а для правильного 3-угольника.

 

4. Выражение R и r через сторону а для правильного 4-угольника.

 

5. Выражение R и r через сторону а для правильного 6-угольника.

 

6. Формула длины окружности. Вывод.

Теорема. Длина окружности С = 2πR.

Доказательство. Рассмотрим ДВА правильных вписанных многоугольника с одинаковым числом сторон n. При увеличении числа сторон их периметры Р1 и Р2 будут стремиться к длинам окружностей, т. е. к С1 и С2. Поэтому

Мы получили, что отношение длины окружности С к ее диаметру 2R есть величина постоянная для всех окружностей. Это отношение обозначается буквой π («пи» — первая буква древнегреческого слова «периметрон» — окружность). Так как для любой окружности C/2R = π, то длина окружности С = 2 πR.

По числу букв в словах фразы «Это я знаю и помню прекрасно, но многие цифры мне лишни, напрасны» можно воспроизвести 12 первых знаков числа π: π = 3,14159265358….

 

7. Формула площади круга. Вывод.

Теорема. Площадь круга S = πR2.

 

8. Длина дуги и площадь сектора.

Длина дуги и площадь сектора пропорциональны градусной мере дуги или центрального угла сектора:

Формулы длины дуги и площади сектора не нужно запоминать — они находятся из логически понятной пропорции:

  • а) длина дуги составляет от длины окружности такую же часть, какую составляет ее градусная мера от 360°;
  • б) площадь сектора составляет от площади круга такую же часть, какую составляет его центральный угол (его дуга) от 360°.

9. Площадь сегмента.

Площадь сегмента равна площади сектора минус или плюс площадь равнобедренного треугольника, образованного радиусами этого сектора. Минус — если центральный угол сектора меньше 180°, и плюс — если больше 180°. Если центральный угол равен 180°, то этот сегмент — полукруг, и его площадь равна πR2/2.

 

10. Радианная мера угла.

Радианом называется центральный угол, опирающийся на дугу окружности, равную 1 радиусу.

Так как длина окружности С = 2πR, то в окружности укладывается радиусов (≈ 6,28 радиуса), а в полуокружности — π радиусов (≈3,14 радиуса).

2π радиан = 360°.  ⇒  π радиан = 180°.  ⇒  1 радиан = 180°/π ≈ 57°

При расчетах слово «радиан» не пишут: π/2 =90°, π/3 = 60°, π/4 =45°, π/6 = 30°.

 

11. Перевод градусной меры угла в радианную и наоборот.

 

ЭТО НУЖНО ЗНАТЬ !


Это опорный конспект № 4 по геометрии для 9 класса «Правильные многоугольники». Выберите дальнейшие действия:

 

3 Комментарии

  1. Gregg:

    Хорошая статья

  2. Тамара:

    Замечательный опорный конспект! Спасибо!

  3. Аноним:

    Великолепно! Благодарю Вас!

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней