Алгебра 8 Макарычев Контрольная 8 с ответами и решениями

Контрольная работа № 8 по алгебре 8 класс для УМК Макарычев и др. «Неравенства» с ответами и решениями (6 вариантов, 3 уровня сложности). Поурочное планирование по алгебре для 8 класса. ГЛАВА IV. НЕРАВЕНСТВА. § 11. Неравенства с одной переменной и их системы (11 ч). Урок 83. Алгебра 8 Макарычев Контрольная 8 + ОТВЕТЫ и РЕШЕНИЯ. Информация для учителей и родителей.

Смотреть Список всех контрольных по алгебре в 8 классе по УМК Макарычев


Контрольная работа № 8
«Неравенства»

Общая характеристика контрольной работы

Контрольная работа составлена в 6 вариантах различной сложности (варианты 1, 2 самые простые, варианты 3, 4 сложнее и варианты 5, 6 самые сложные). При этом сложность вариантов нарастает не очень резко. Каждый вариант содержит 6 задач примерно одинаковой сложности (может быть, несколько сложнее две последние задачи).

При проверке вариантов 1, 2 оценка «5» ставится за правильное решение пяти задач, оценка «4» — четырех задач и оценка «3» — трех задач. Одна задача является резервной (или запасной) и дает некоторую свободу выбора учащимся. При таких же критериях оценки за решение задач вариантов 3, 4 дается дополнительно 0,5 балла, вариантов 5, 6 — 1 балл (т. е. оценку «5» можно получить за правильное решение четырех задач).

I уровень сложности. Варианты 1 и 2

Алгебра 8 Макарычев Контрольная 8

  1. Решите неравенство 3(х – 1) > 2(3 – х).
  2. Решите неравенство –2 ≤ 3х + 1 ≤ 4.
  3. Решите систему неравенств
    { 3 – 2х ≥ 0,
    { 3х + 1 > 0.
  4. Известно, что 1,2 < х < 1,3 и 2,7 < у < 2,8. Оцените величину х + 2у.
  5. При каких значениях х функция у = 2 – 4х принимает отрицательные значения?
  6. Найдите область определения и область значений функции у = √[1 – 2х].

Примечание: в квадратных скобках [ ] — выражение или число, находящиеся под действием арифметического корня √.

  1. Решите неравенство 2(х – 1) < 3(2 – х).
  2. Решите неравенство –3 ≤ 2х – 1 ≤ 5.
  3. Решите систему неравенств
    { 4 – 3х ≥ 0,
    { 2х + 1 > 0.
  4. Известно, что 1,8 < х < 1,9 и 2,4 < у < 2,5. Оцените величину 2х + у.
  5. При каких значениях х функция у = 3 – 5х принимает отрицательные значения?
  6. Найдите область определения и область значений функции у = √[2 – 3х].

II уровень сложности. Варианты 3 и 4

  1. Докажите неравенство x2 + 4л; + 16 ≥ 12x.
  2. Решите неравенство (x – 1)/4 – 1 > (x + 1)/3 – 7.
  3. Решите неравенство |х – 3| ≤ 2.
  4. Найдите область определения функции у = (х + 1)/√[x – 2] – 3√[9 – 2х].
  5. Известно, что 1,4 < х < 1,5 и 2,7 < у < 2,8. Оцените величину 7х – 3у.
  6. При всех значениях параметра а решите неравенство ах + 1 ≥ а2 – х.

  1. Докажите неравенство x2 + 5х + 25 ≥ 15х.
  2. Решите неравенство (1 – 2x)/3 – 2 < (1 – 3x)/5 + 4.
  3. Решите неравенство |х – 2| ≤ 3.
  4. Найдите область определения функции у = (2x – 3)/√[x – 1] + 4√[5 – 2x].
  5. Известно, что 2,2 < х < 2,3 и 3,5 < у < 3,6. Оцените величину 5х – 2у.
  6. При всех значениях параметра а решите неравенство ах + 1 ≥ а2 + х.

III уровень сложности. Варианты 5 и 6

  1. Решите неравенство (3x2 + 2)(3х – 2 – (х – 3)(2х + 1) + 2x2) < 0.
  2. Решите неравенство |2 – 7х| ≥ 1.
  3. Найдите область определения функции y = (3х – 2)/√[5x + 2] – (x + 2)√[3 – 4x].
  4. При каких значениях а решения уравнения 4х = ах – 3 положительны?
  5. На координатной плоскости изобразите множество точек (х; у), координаты которых удовлетворяют неравенству |у + 2х| ≤ 1.
  6. При всех значениях а решите неравенство (а + 2)х ≥ а2 – а – 6.

  1. Решите неравенство (2x2 + 3)(4х –3–(х + 2)(2х – 1) + 2x2) < 0.
  2. Решите неравенство |3 — 5x| ≥ 2.
  3. Найдите область определения функции y = (2x – 5)/√[7x + 3] – (x – 3)√[4 – 5x].
  4. При каких значениях а решения уравнения 3х = ах – 7 отрицательны?
  5. На координатной плоскости изобразите множество точек (х; у), координаты которых удовлетворяют неравенству |у – 3х| < 2.
  6. При всех значениях а решите неравенство (а + 3)х < а2 + а – 6.

 


ОТВЕТЫ на контрольную работу.
Варианты 1-4

Вариант 1
№ 1. (1,8; –∞).
№ 2.
[–1; 1].
№ 3.
(–1/3; 3/2].
№ 4.
(6,6; 6,9).
№ 5.
(0,5; +∞).
№ 6.
(–∞; 0,5].

Вариант 2
№ 1. (–∞; 1,6).
№ 2.
[–1; 3].
№ 3.
(–1/2; 4/3].
№ 4.
(6,0; 6,3).
№ 5.
(–∞; 0,6).
№ 6.
(–∞; 2/3].

Вариант 3
№ 2. (–∞; –91).
№ 3.
[1; 5].
№ 4.
(2; 4,5].
№ 5.
(1,4; 2,4).
№ 6.
При а ∈ (–∞; –1) х ∈ (–∞; а – 1],
при а = –1 х ∈ (–∞; +∞),
при а ∈ (–1; +∞) x ∈ [а – 1; +∞).

Вариант 4
№ 2. (–88; –∞).
№ 3.
[–1; 5].
№ 4.
(1; 2,5].
№ 5.
(3,8; 4,5).
№ 6.
При а ∈ (–∞; 1) x ∈ (–∞; а + 1 ],
при а = 1 x ∈ (–∞; +∞),
при а ∈ (1; +∞) x ∈ [а + 1; +∞).

 


ОТВЕТЫ и РЕШЕНИЯ
на контрольную работу. Варианты 5-6

 


Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). ГЛАВА IV. НЕРАВЕНСТВА. § 11. Неравенства с одной переменной и их системы (11 ч). Урок 83. Алгебра 8 Макарычев Контрольная 8 + ОТВЕТЫ и РЕШЕНИЯ.

Смотреть Список всех контрольных по алгебре в 8 классе по УМК Макарычев

Вернуться к Списку уроков Тематического планирования в 8 классе.

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней