Контрольная работа № 8 по алгебре 8 класс для УМК Макарычев и др. «Неравенства» с ответами и решениями (6 вариантов, 3 уровня сложности). Поурочное планирование по алгебре для 8 класса. ГЛАВА IV. НЕРАВЕНСТВА. § 11. Неравенства с одной переменной и их системы (11 ч). Урок 83. Алгебра 8 Макарычев Контрольная 8 + ОТВЕТЫ и РЕШЕНИЯ. Информация для учителей и родителей.

Смотреть Список всех контрольных по алгебре в 8 классе по УМК Макарычев


Контрольная работа № 8
«Неравенства»

Общая характеристика контрольной работы

Контрольная работа составлена в 6 вариантах различной сложности (варианты 1, 2 самые простые, варианты 3, 4 сложнее и варианты 5, 6 самые сложные). При этом сложность вариантов нарастает не очень резко. Каждый вариант содержит 6 задач примерно одинаковой сложности (может быть, несколько сложнее две последние задачи).

При проверке вариантов 1, 2 оценка «5» ставится за правильное решение пяти задач, оценка «4» — четырех задач и оценка «3» — трех задач. Одна задача является резервной (или запасной) и дает некоторую свободу выбора учащимся. При таких же критериях оценки за решение задач вариантов 3, 4 дается дополнительно 0,5 балла, вариантов 5, 6 — 1 балл (т. е. оценку «5» можно получить за правильное решение четырех задач).

I, II, III уровни сложности. Варианты 1-6 (задания)

Алгебра 8 Макарычев Контрольная 8

 

ОТВЕТЫ на контрольную работу.

Примечание: в квадратных скобках [ ] — выражение или число, находящиеся под действием арифметического корня √.

ОТВЕТЫ на Вариант 1

№ 1. Решите неравенство 3(х – 1) > 2(3 – х).
ОТВЕТ:
(1,8; +∞).

№ 2. Решите неравенство –2 ≤ 3х + 1 ≤ 4.
ОТВЕТ:
[–1; 1].

№ 3. Решите систему неравенств
{ 3 – 2х ≥ 0,
{ 3х + 1 > 0.
ОТВЕТ:
(–1/3; 3/2].

№ 4. Известно, что 1,2 < х < 1,3 и 2,7 < у < 2,8. Оцените величину х + 2у.
ОТВЕТ:
(6,6; 6,9).

№ 5. При каких значениях х функция у = 2 – 4х принимает отрицательные значения?
ОТВЕТ:
(0,5; +∞).

№ 6. Найдите область определения и область значений функции у = √[1 – 2х].
ОТВЕТ:
(–∞; 0,5].

ОТВЕТЫ на Вариант 2

№ 1. Решите неравенство 2(х – 1) < 3(2 – х).
ОТВЕТ:
(–∞; 1,6).

№ 2. Решите неравенство –3 ≤ 2х – 1 ≤ 5.
ОТВЕТ:
[–1; 3].

№ 3. Решите систему неравенств
{ 4 – 3х ≥ 0,
{ 2х + 1 > 0.
ОТВЕТ:
(–1/2; 4/3].

№ 4. Известно, что 1,8 < х < 1,9 и 2,4 < у < 2,5. Оцените величину 2х + у.
ОТВЕТ:
(6,0; 6,3).

№ 5. При каких значениях х функция у = 3 – 5х принимает отрицательные значения?
ОТВЕТ:
(0,6; +∞).

№ 6. Найдите область определения и область значений функции у = √[2 – 3х].
ОТВЕТ:
(–∞; 2/3].

ОТВЕТЫ на Вариант 3

№ 1. Докажите неравенство x2 + 4х + 16 ≥ 12x.
Доказательство:

№ 2. Решите неравенство (x – 1)/4 – 1 > (x + 1)/3 – 7.
ОТВЕТ:
(–∞; –91).

№ 3. Решите неравенство |х – 3| ≤ 2.
ОТВЕТ:
[1; 5].

№ 4. Найдите область определения функции у = (х + 1)/√[x – 2] – 3√[9 – 2х].
ОТВЕТ:
(2; 4,5].

№ 5. Известно, что 1,4 < х < 1,5 и 2,7 < у < 2,8. Оцените величину 7х – 3у.
ОТВЕТ:
(1,4; 2,4).

№ 6. При всех значениях параметра а решите неравенство ах + 1 ≥ а2 – х.
ОТВЕТ:
При а ∈ (–∞; –1) х ∈ (–∞; а – 1],
при а = –1 х ∈ (–∞; +∞),
при а ∈ (–1; +∞) x ∈ [а – 1; +∞).

ОТВЕТЫ на Вариант 4

№ 1. Докажите неравенство x2 + 5х + 25 ≥ 15х.
Доказательство:
x2 + 5х + 25 – 15х ≥ 0
x2 – 10х + 25 ≥ 0
(х – 5)2 ≥ 0  => любое число в квадрате больше или равно нулю.

№ 2. Решите неравенство (1 – 2x)/3 – 2 < (1 – 3x)/5 + 4.
ОТВЕТ:
(–88; –∞).

№ 3. Решите неравенство |х – 2| ≤ 3.
ОТВЕТ:
[–1; 5].

№ 4. Найдите область определения функции у = (2x – 3)/√[x – 1] + 4√[5 – 2x].
ОТВЕТ:
(1; 2,5].

№ 5. Известно, что 2,2 < х < 2,3 и 3,5 < у < 3,6. Оцените величину 5х – 2у.
ОТВЕТ:
(3,8; 4,5).

№ 6. При всех значениях параметра а решите неравенство ах + 1 ≥ а2 + х.
ОТВЕТ:
При а ∈ (–∞; 1) x ∈ (–∞; а + 1 ],
при а = 1 x ∈ (–∞; +∞),
при а ∈ (1; +∞) x ∈ [а + 1; +∞).

ОТВЕТЫ и Решения на Вариант 5

№ 1. Решите неравенство (3x2 + 2)(3х – 2 – (х – 3)(2х + 1) + 2x2) < 0.
ОТВЕТ:

№ 2. Решите неравенство |2 – 7х| ≥ 1.
ОТВЕТ:

№ 3. Найдите область определения функции y = (3х – 2)/√[5x + 2] – (x + 2)√[3 – 4x].
ОТВЕТ:

№ 4. При каких значениях а решения уравнения 4х = ах – 3 положительны?
ОТВЕТ:

№ 5. На координатной плоскости изобразите множество точек (х; у), координаты которых удовлетворяют неравенству |у + 2х| ≤ 1.
ОТВЕТ:
см.решение в спойлере.

№ 6. При всех значениях а решите неравенство (а + 2)х ≥ а2 – а – 6.
ОТВЕТ:
см.решение в спойлере.

ОТВЕТЫ и Решения на Вариант 6

№ 1. Решите неравенство (2x2 + 3)(4х –3–(х + 2)(2х – 1) + 2x2) < 0.
ОТВЕТ:

№ 2. Решите неравенство |3 — 5x| ≥ 2.
ОТВЕТ:

№ 3. Найдите область определения функции y = (2x – 5)/√[7x + 3] – (x – 3)√[4 – 5x].
ОТВЕТ:

№ 4. При каких значениях а решения уравнения 3х = ах – 7 отрицательны?
ОТВЕТ:

№ 5. На координатной плоскости изобразите множество точек (х; у), координаты которых удовлетворяют неравенству |у – 3х| < 2.
ОТВЕТ: 
см.решение в спойлере.

№ 6. При всех значениях а решите неравенство (а + 3)х < а2 + а – 6.
ОТВЕТ: 
см.решение в спойлере.

 


Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). ГЛАВА IV. НЕРАВЕНСТВА. § 11. Неравенства с одной переменной и их системы (11 ч). Урок 83. Алгебра 8 Макарычев Контрольная 8 + ОТВЕТЫ и РЕШЕНИЯ.

Смотреть Список всех контрольных по алгебре в 8 классе по УМК Макарычев

Вернуться к Списку уроков Тематического планирования в 8 классе.

4 Комментарии

  1. Хитрый лис:

    Можно на 1-4 вариант тоже письменно ответ писать,а то так непонятно

  2. Аноним:

    в ответах во 2варианте, кажется ошибка, т. к. должно было получится(0.6;+∞)
    Если у=3-5х
    то 3-5х<0
    -5х-3:(-5) «знак неравенства меняется т. к. переносим число с отрицательным знаком»
    х>0, 6
    следовательно, ответ (0, 6;+∞)

  3. admin:

    Внимание! Задания и ответы взяты из печатного пособия. С Вашей помощью мы обнаружили и продолжаем находить опечатки и ошибки в данном пособии. Если у Вас есть сомнения в правильности решения, то напишите нам тут, мы проверим.

Добавить комментарий

На сайте используется ручная модерация. Срок проверки комментариев: от 1 часа до 3 дней