Поурочное планирование по алгебре для 8 класса. Ориентировано на работу с УМК Макарычев. Алгебра 8 класс. Просвещение. Глава 1. Рациональные дроби. § 1. Рациональные дроби и их свойства (5 ч). Уроки 3-5. Основное свойство дроби. Сокращение дробей. Вернуться к Списку уроков Тематического планирования.
Цели: рассмотреть основное свойство дроби и отработать навыки сокращения дробей и приведения дробей к заданному знаменателю.
Планируемые результаты: вспомнить основное свойство дроби, отработать навыки сокращения дробей.
Тип уроков: уроки изучения нового материала, урок-практикум.
ХОД УРОКОВ
План уроков
Свойства рациональных дробей и операции с ними очень похожи на свойства числовых дробей и действия с ними. Напомним известное вам основное свойство обыкновенной дроби: если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится равная дробь, т. е. равенство a/b = ac/bc верно при любых натуральных значениях а, b и с.
Это равенство справедливо не только при натуральных, но и при любых других значениях переменных а, b и с, при которых знаменатель не равен нулю, т. е. при b ≠ 0 и с ≠ 0. Докажем это утверждение.
Пусть дробь a/b = m. Тогда по определению частного имеем а = bm. Умножим обе части этого равенства на число с и получим ас = (bm) • с. На основании переместительного и сочетательного свойств умножения запишем: ас = (bс) • m. Так как b ≠ 0 и с ≠ 0 (т. е. bс ≠ 0), то выразим из этого равенства величину m = ac/bc. Кроме этого равенства, есть равенство m = a/b. Приравняем правые части этих выражении и получим требуемое равенство a/b = ac/bc.
Заметим, что основное свойство дроби выполняется и в том случае, когда с — любое ненулевое выражение.
Уточним некоторые понятия, изученные в 7 классе. Ранее тождеством называлось равенство, которое выполнялось при любых значениях переменных. Тождествами, например, назывались все формулы сокращенного умножения и т. д. Равенство a/b = ac/bc верно при всех значениях переменных, при которых его левая и правая части имеют смысл, т. е. при всех допустимых значениях переменных. Такие равенства также называют тождествами. Очевидно, что ранее данное понятие тождества является частным случаем более общего определения.
В общем случае тождеством называется равенство, верное при всех допустимых значениях входящих в него переменных. Два выражения, принимающие равные значения при всех допустимых для них значениях переменных, называют тождественно равными. Замену одного такого выражения другим называют тождественным преобразованием выражения.
Было доказано, что равенство a/b = ac/bc верно при всех допустимых значениях переменных. Поэтому по определению это равенство является тождеством. Такое тождество называют основным свойством дроби.
Основное свойство дроби используют для ее приведения к заданному знаменателю.
Пример 1
Пример 2
Пример 3
Заметим, что приведение дробей к заданному знаменателю используется при сложении и вычитании дробей.
Поменяем в равенстве a/b = ac/bc левую и правую части местами и получим тождество ac/bc = a/c. Это равенство позволяет заменить дробь вида ac/bc более простой тождественно равной дробью a/c, т. е. сократить дробь ac/bc на общий множитель с числителя и знаменателя.
Пример 4
Заметим, что при сокращении дроби надо выделять наибольший общий множитель числителя и знаменателя. В рассмотренном примере множитель 7а2b2 были наибольшим. Для выражений 35а2b2 и 7а2b3 число 7 является наибольшим общим делителем чисел 35 и 7, а2 — множитель а в наименьшей степени, с которой он входит в числитель и знаменатель, b2 — множитель b также в наименьшей степени, с которой он входит в числитель и знаменатель. Поэтому множитель 7а2b2 — наибольший общий множитель числителя и знаменателя.
Если общий множитель числителя и знаменателя будет не наибольшим, то после сокращения на него дроби дробь может быть сокращена еще.
Пример 5
Разумеется, при сокращении дробей используют и другие способы разложения многочленов, стоящих в числителе и знаменателе дроби, на множители. В частности, широко используется способ группировки и вынесения общего множителя за скобки.
Пример 6
Так как и далее мы будем использовать разложение числителя и знаменателя дроби на множители, вспомним основные способы разложения многочленов на множители:
Напомним также формулы сокращенного умножения:
1) а2 — b2 = (а — b)(а + b) (разность квадратов двух чисел равна произведению разности и суммы этих чисел);
2) (а + b)2 = а2 + 2ab + b2 (квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа);
3) (а — b)2 = а2 — 2ab + b2 (квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа);
4) а3 — b3 = (а — b)(а2 + ab + b2) (разность кубов двух чисел равна произведению разности этих чисел на неполный квадрат их суммы).
Заметим, что неполным квадратом суммы чисел а и b называется выражение а2 + ab + b2 (по аналогии с квадратом (или полным квадратом) суммы чисел а и b: (а + b)2 = а2 + 2ab + b2);
5) а3 + b3 = (а + b)(а2 — ab + b2) (сумма кубов двух чисел равна произведению суммы этих чисел на неполный квадрат их разности).
Отметим, что неполным квадратом разности чисел а и b называется выражение а2 — ab + b2 (сравните с полным квадратом разности чисел а и b: (а — b)2 = а2 — 2ab + b2):
6) (а + b)3 — а3 + 3а2b + 3аb2 + b3 (куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго плюс куб второго числа);
7) (а — b)3 = а3 — 3а2b + 3ab2 — b3(куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа).
№ 23 (б, д); 25 (д); 27 (а); 28 (б, г); 29 (а, г); 30 (в); 31 (б); 32 (а); 33 (б); 35 (б); 42 (б); 44 (в); 45; 47; 49 (а, в).
Домашнее задание: № 23 (а, г, е); 24 (в, е); 25 (а); 27 (б); 28 (а, в); 29 (д, е); 30 (д); 31 (а); 32 (б); 33 (а, г); 35 (а, г); 38 (а, д); 39; 41 (а); 46; 48; 49 (б, г).
Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). Глава 1. Рациональные дроби. § 1. Рациональные дроби и их свойства (5 ч). Уроки 3-5. Основное свойство дроби. Сокращение дробей.
Вернуться к Списку уроков Тематического планирования.