Урок 26. Арифметический квадратный корень - УЧИТЕЛЬ.PRO

Поурочное планирование по алгебре для 8 класса. Ориентировано на работу с УМК Макарычев. Алгебра 8 класс. Просвещение. Глава 2. КВАДРАТНЫЕ КОРНИ (19 ч). § 5. Арифметический квадратный корень (5 ч). Урок  26. Квадратные корни. Арифметический квадратный корень. Вернуться к Списку уроков Тематического планирования.


 

Урок 26. Квадратные корни.
Арифметический квадратный корень

Цель: рассмотреть понятие квадратных корней и понятие арифметического квадратного корня.
Планируемые результаты: научиться извлекать квадратные корни из чисел, решать простейшие уравнения.
Тип урока: урок–лекция.

ХОД УРОКА

I. Сообщение темы и цели урока

II. Работа по теме урока

План урока

  1. Понятие квадратного корня.
  2. Решение простейших уравнений.
1. Понятие квадратного корня

Пример 1.

Найдем длину стороны квадрата, если его площадь равна 100 м2.

Пусть длина стороны квадрата равна х (м). Тогда площадь квадрата равна x22). По условию эта площадь составляет 100 м2. Получаем уравнение x2 = 100. Запишем его в виде x2 – 100 = 0 и по формуле разности квадратов разложим левую часть на множители: x2 – 102 = 0 или (х + 10)(х – 10) = 0. Произведение множителей равно нулю, если один из них равен нулю. Получаем два линейных уравнения: х + 10 = 0 (его корень х = –10) их – 10 = 0 (корень х = 10). Таким образом, уравнение x2 = 100 имеет два корня: х = –10 и х = 10. Квадраты обоих чисел равны 100, поэтому оба числа называются квадратными корнями из числа 100. Так как длина стороны квадрата не может выражаться отрицательным числом, то условию задачи удовлетворяет только один из корней уравнения — х = 10. Итак, длина стороны квадрата 10 м.

Квадратным корнем из неотрицательного числа а называют число b, квадрат которого равен числу а. В рассмотренном примере числа 10 и –10 были квадратными корнями из положительного числа 100, так как и 102 = 100, и (–10)2 = 100.

Арифметическим квадратным корнем из неотрицательного числа а называется неотрицательное число b, квадрат которого равен числу а. Арифметический квадратный корень обозначается символом √. Таким образом, b = √а, если выполнено соотношение b2 = а (а, b > 0).

Символ  называют знаком арифметического квадратного корня, выражение, стоящее под знаком корня, называют подкоренным выражением. Запись √а читают: квадратный корень из а (слово «арифметический» при этом опускают).

Пример 2

Из рассмотренного примера видно, что операция извлечения квадратного корня из числа обратна операции возведения числа в квадрат.

Обратите внимание на то, что арифметическим квадратным корнем всегда является неотрицательное число.

Пример 3

Заметим, что нельзя считать √9 = –3 арифметическим квадратным корнем, хотя и выполняется соотношение b2 = (–3)2 = 9 = а. Однако b = –3 < 0, и это значение b не арифметический квадратный корень.

Из рассмотренного примера следует, что √а2 = |а|, так как арифметический квадратный корень должен быть числом неотрицательным.

Пример 4

Здесь по определению раскрыт модуль числа (с – 3).

Таким образом, число b является арифметическим квадратным корнем из числа а (т. е. b = √a), если выполнены два условия: 1) b ≥ 0 и 2) b2 = а.

При а < 0 выражение √а не имеет смысла. Очевидно, что если подставить величину b = √а в условие 2, то получим тождество (√а)2 = а (справедливое при допустимых значениях а, т. е. при а > 0).

2. Решение простейших уравнений

С понятием арифметического квадратного корня связаны простейшие иррациональные уравнения и неравенства.

Пример 5

Пример 6

Пример 7

Пример 8

III. Задания на уроке

№ 298 (а, в); 299 (б, г); 300 (а, в, д); 302 (б); 304 (б, г, е); 305 (а, д); 307 (б); 308 (а); 311 (а, г); 314 (а, б).

IV. Контрольные вопросы

  1. Дайте определение квадратного корня.
    2. Дайте определение арифметического квадратного корня.
    3. При каких условиях √а = b
    4. Для каких значений а выражение √a имеет смысл?

V. Творческие задания

VI. Подведение итогов урока

Домашнее задание: № 298 (б, г); 299 (а, в); 300 (б, г, е); 302 (а); 304 (а, в, д); 305 (б, г); 307 (а); 308 (б); 311 (б, е); 315.

 

 


Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). Глава 2. КВАДРАТНЫЕ КОРНИ (19 ч). § 5. Арифметический квадратный корень (5 ч). Урок  26. Квадратные корни. Арифметический квадратный корень.

Вернуться к Списку уроков Тематического планирования.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *